Cloacibacillus evryensis Ganesan et al. 2008
14828T <– A. Sghir 158.
Accessioned in 2007.
=DSM 19522.
Type strain [7441].
Medium: 641; Temperature: 37°C; Anaerobic.
Source: Anaerobic digester of a wastewater treatment plant in Evry, France [7441].
Biochemistry/Physiology: [7441].
Fatty acid: [7441].
Polar lipid: [7441].
G+C (mol%): 55.8 (HPLC) [7441].
Phylogeny: 16S rRNA gene (CU463952) [7441].
Genome sequence: JFBR00000000.
NCBI Taxonomy ID: 508460.
Publication(s) using this strain [C08074].
参考文献
1
Cloacibacillus sp., a Potential Human Pathogen Associated with Bacteremia in Quebec and New Brunswick.
Domingo M-C Journal of clinical microbiology 2015-10 PubMed期刊 10.1128/JCM.01137-15
Bacteremia due to Cloacibacillus species is poorly described. We present three cases involving either Cloacibacillus evryensis or Cloacibacillus porcorum. The isolates were identified by 16S rRNA gene sequencing and were susceptible to an
2
Cloacibacillus sp., a Potential Human Pathogen Associated with Bacteremia in Quebec and New Brunswick
Domingo M.-C. Journal of Clinical Microbiology 2015-10 英国皇家学会期刊 10.1128/JCM.01137-15
Bacteremia due to Cloacibacillus species is poorly described. We present three cases involving either Cloacibacillus evryensis or Cloacibacillus porcorum . The isolates were identified by 16S rRNA gene sequencing and were susceptible to a
3
Cloacibacillus sp., a Potential Human Pathogen Associated with Bacteremia in Quebec and New Brunswick
M.-C. Domingo Journal of Clinical Microbiology 2015-10 Duke University Press Journal 10.1128/JCM.01137-15
Bacteremia due to Cloacibacillus species is poorly described. We present three cases involving either Cloacibacillusevryensis or Cloacibacillusporcorum. The isolates were identified by 16S rRNA gene sequencing and were susceptible to anti
4
Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ’Synergistetes’, isolated from an anaerobic sludge digester.
Ganesan Akila International Journal of Systematic and Evolutionary Microbiology 2008-Pt 9 PubMed期刊 10.1099/ijs.0.65645-0
A novel anaerobic, mesophilic, amino-acid-utilizing bacterium, strain 158T, was isolated from an anaerobic digester of a wastewater treatment plant. Cells of strain 158T were non-motile, rod-shaped (2.0-3.0 x 0.8-1.0 microm) and stained G
一种内源性复合微生物菌剂的特性及其固定化对猪场粪污水的处理效果 被引量:2
1
作者尤新新 王晟 都林娜
机构温州科技职业学院
出处《浙江大学学报:农业与生命科学版》 CAS CSCD 北大核心 2021年第1期98-106,共9页
基金浙江省温州市重大科技专项(ZS2017001) 浙江省基础公益研究计划(LGF18E090007) 浙江省教育厅一般科研项目(Y201942587)。
摘要以规模化猪场粪污水为研究对象,以污水原液为主要营养来源,通过富集内源性土著微生物得到复合微生物菌剂(WKM),并分析监测其在污水处理过程中对猪场粪污水化学需氧量(chemical oxygen demand,COD)和氨氮的削减效果。结果表明:投加WKM处理3 d后,猪场粪污水(ZW)中COD和氨氮去除率分别达94.8%和61.8%。通过高通量测序发现:复合微生物菌剂中主要微生物种类属于变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes);在属水平上,其主要的微生物种类属于白色杆菌属(Leucobacter)、卡斯特兰尼菌属(Castellaniella)、Camelimonas属、Moheibacter属、亚硝化单胞菌属(Nitrosomonas)、Cloacibacillus属和尼古丁降解菌属(Pusillimonas),丰度比例约为2∶2∶2∶2∶1.5∶1.5∶1。基于直系同源蛋白簇(clusters of orthologous groups of proteins,COG)功能分布预测表明:复合微生物菌剂WKM的微生物功能结构中,氨基酸转运和代谢([E])、能量产生与转化([C])、碳水化合物转运和代谢([G])、无机离子转运和代谢([P])、辅酶转运和代谢([H])的功能丰度相对较高,对含高浓度的氨氮和有机污染物的猪场粪污水中蛋白质及脂类等有机物质的转换起到了重要作用。在猪场粪污水(ZR)中,经麸皮固定化后的复合微生物菌剂对COD的去除率进一步提高,极显著高于无添加组(P<0.01)和显著高于WKM组(P<0.05)。通过固定化配比优化实验得出:按照质量体积比1∶50的比例混合的麸皮和复合微生物菌剂对COD的去除效果最佳,高达89.4%(P<0.05)。综上所述,本研究制备获得的麸皮固定化复合微生物菌剂在猪场粪污水的除污处理中具有潜在的应用和实践价值。
关键词猪场粪污水 内源性复合微生物菌剂 高通量测序 麸皮固定化
Keywordswastewater from pig feedlots endogenous compound microbial inoculant high-throughput sequencing wheat bran immobilization
分类号X52 [环境科学与工程—环境工程] S851.24 [农业科学—预防兽医学]
日粮纤维对竹鼠生长及肠道菌群组成的影响
2
作者周可心 吴允正 戴益民 董思琦 杨磊 胡永强 张文韬 张锦华
机构江西农业大学动物科学技术学院
出处《现代畜牧兽医》 2021年第6期36-41,共6页
基金国家自然科学基金(31860694)。
摘要试验旨在研究日粮中纤维对竹鼠生长及肠道菌群组成的影响。选取健康状态良好、体重相近的6只竹鼠,随机分为2组,每组3只。试验组添加含0%竹茎,对照组投喂40%竹茎,试验期为45 d。结果显示,与对照组相比,在门水平上,试验组竹鼠肠道蓝藻菌门(Cyanobacteria)丰度极显著降低(P<0.01),而互养菌门(Synergistetes)丰度极显著升高(P<0.01);在属水平上,试验组的norank_f_Muribaculaceae丰度极显著低于对照组(P<0.01),而Cloacibacillus极显著高于对照组(P<0.01),优势菌属发生明显的改变。研究表明,日粮中缺乏竹茎成分使竹鼠肠道菌群多样性降低,破坏竹鼠肠道菌群的平衡,影响营养物质的吸收。
关键词竹茎 竹鼠 生长 肠道菌群
KeywordsBamboo stem Rhizomyidae Growth Intestinal flora
分类号S816.7 [农业科学—饲料科学]
原核微生物菌群的空间分异增强秸秆-猪粪混合发酵效率 被引量:2
3
作者李家宝 芮俊鹏 张时恒 孙晓日 闫志英 刘晓风 郑涛 李香真
机构中国科学院成都生物研究所 南京工业大学生物与制药工程学院
出处《化工学报》 EI CAS CSCD 北大核心 2014年第5期1792-1799,共8页
基金国家重点基础研究发展计划项目(2013CB733502) 国家自然科学基金项目(41301271 41271260)~~
摘要秸秆与禽畜粪便混合发酵既可增强反应器稳定性又能提高发酵产气效率。然而关于秸秆附着菌群、发酵液菌群的时空动态变化,以及它们与产气效率、环境变量的关系仍然未被全部揭示。采用16S rRNA基因扩增子高通量测序技术,对这一问题进行了研究。结果显示,秸秆猪粪混合发酵能够改善沼气发酵的效率。原核微生物群落在空间上的差异分布可能有助于提升系统的效率。在产气高效的系统中,秸秆吸附菌群如Treponema、ClostridiumⅢ、Alkaliflexus和Fibrobacter是主要的纤维素降解菌,提供底物给产酸菌。丙酸是发酵液中含量最丰富的挥发性脂肪酸(VFAs),Pelotomaculum可能是该系统主要的丙酸氧化菌,它们与Methanoculleus、Methanosarcina和Methanosaeta协同作用通过二氧化碳/氢营养型和乙酸营养型产甲烷途径,将包括丙酸在内的VFAs最终转化成甲烷。参与氨基酸代谢的Aminobacterium和Cloacibacillus广泛分布于发酵液中,表明蛋白质是一种重要的发酵底物,说明VFAs尤其是丙酸和氨基酸的互营代谢可能是秸秆猪粪混合发酵系统的重要过程。这些结果表明,功能菌群的空间分化、稳定的秸秆降解菌群和发酵液菌群的弹性变化有助于维持秸秆猪粪混合发酵系统的稳定性和提高发酵效率。
关键词发酵 秸秆 猪粪 16S rRNA扩增子高通量测序 原核微生物群落
Keywordsfermentation straw swine manure 16S rRNA amplicon pyrosequencing prokaryotic community
分类号Q939 [生物学—微生物学]
Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system 被引量:1
4
作者Lingwei Meng Xiangkun Li Xinran Wang Kaili Ma Gaige Liu Jie Zhang
机构School of Municipal and Environmental Engineering
出处《环境科学学报:英文版》 SCIE EI CAS CSCD 2017年第11期110-117,共8页
基金supported by the National Natural Science Foundation of China (No.51478138) the State Key Lab of Urban Water Resource and Environment (No.HIT ES200902)
摘要This study aimed to reveal how amoxicillin(AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes(ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed(EGSB) reactor was designed and run for 241 days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA-1, OXA-2, OXA-10, TEM-1, CTX-M-1, class I integrons(intI1) and 16 SrRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter,Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds(such as various sugars and amines). And the relative quantification of eachβ-lactam resistance gene in the study was changed with the increasing of AMX concentration.Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system.
关键词Amoxicillin(AMX) Expanded granular sludge bed(EGSB) 454 pyrosequencing Antibiotic resistance genes(ARGs)
KeywordsAmoxicillin(AMX) Expanded granular sludge bed(EGSB) 454 pyrosequencing Antibiotic resistance genes(ARGs)
分类号X1 [环境科学与工程—环境科学]
Yarrowia lipolytica | NBRC-0717, NBRC-0746, NBRC-1195, NBRC-1209, NBRC-1457, NBRC-1542, NBRC-1548T, NBRC-1550, NBRC-1551, NBRC-1601, NBRC-1631, NBRC-1632, NBRC-1658, NBRC-1659, NBRC-1741, NBRC-1742, NBRC-1746, NBRC-1747, NBRC-10073, NBRC-113670 |
Yarrowia porcina | NBRC-112345T |
Yersinia bercovieri | NBRC-105717T |
Yersinia enterocolitica subsp. enterocolitica | NBRC-105693T |
Yersinia pseudotuberculosis | NBRC-105692T, NBRC-112616, NBRC-112617, NBRC-112618, NBRC-112619, NBRC-112620, NBRC-112722, NBRC-112762, NBRC-112763 |
Yersinia rohdei | NBRC-105715T |
Yersinia ruckeri | NBRC-102019 |
Yinghuangia aomiensis | NBRC-106164T |
Yinghuangia catbensis | NBRC-107860T |
Yinghuangia soli | NBRC-115572T |
Yokenella regensburgei | NBRC-102600T |
Yonghaparkia alkaliphila | NBRC-106160T |
Yoonia vestfoldensis | NBRC-102487T |
Yosiokobayasia kusanaginensis | NBRC-106952, NBRC-109322 |
Yunzhangia auriculariae | NBRC-1580T |
Zalerion maritima | NBRC-8619, NBRC-32164 |
Zalerion xylestrix | NBRC-7836 |
Zancudomyces culisetae | NBRC-111172, NBRC-111173 |
Zeaxanthinibacter enoshimensis | NBRC-101990T |
Zhihengliuella aestuarii | NBRC-109060T |
Zhihengliuella alba | NBRC-109061T |
Zhihengliuella flava | NBRC-109021T |
Zhihengliuella halotolerans | NBRC-107838T |
Zhihengliuella salsuginis | NBRC-109062T |
Zhongshania ponticola | NBRC-113193 |
Zimmermannella alba | NBRC-15616T |
Zobellia uliginosa | NBRC-14962T |
Zoogloea oryzae | NBRC-102407T |
Zoogloea ramigera | NBRC-15342T |
Zopfiella erostrata | NBRC-109852 |
Zopfiella karachiensis | NBRC-32902, NBRC-32903 |
Zopfiella latipes | NBRC-9826, NBRC-30408, NBRC-30409 |
Zopfiella leucotricha | NBRC-9828, NBRC-31819, NBRC-32848 |
Zopfiella longicaudata | NBRC-30296, NBRC-30441, NBRC-32846 |
Zopfiella lundqvistii | NBRC-30585T, NBRC-30643, NBRC-30644, NBRC-30645, NBRC-30646, NBRC-30647, NBRC-30648, NBRC-30649, NBRC-30650, NBRC-30651, NBRC-30652 |
Zopfiella marina | NBRC-30420T |
Zopfiella matsushimae | NBRC-30217T |
Zopfiella pilifera | NBRC-9558T |
Zopfiella tetraspora | NBRC-32904 |
Zygoascus hellenicus | NBRC-1575T, NBRC-10183, NBRC-10184T, NBRC-10185, NBRC-10186, NBRC-10187, NBRC-10246, NBRC-10720 |
Zygophiala jamaicensis | NBRC-31255, NBRC-31256, NBRC-31257, NBRC-31258, NBRC-31259, NBRC-31260, NBRC-31261, NBRC-31262, NBRC-31263, NBRC-31264, NBRC-31265, NBRC-31266, NBRC-31267, NBRC-31268, NBRC-31269, NBRC-31270, NBRC-31271, NBRC-31272, NBRC-31273, NBRC-31274, NBRC-31275, NBRC-31276, NBRC-31277 |
Zygorhynchus californiensis | NBRC-6663T |
Zygorhynchus exponens var. exponens | NBRC-6664T, NBRC-100515, NBRC-100517, NBRC-100518 |
Zygorhynchus exponens var. smithii | NBRC-6665T |
Zygorhynchus moelleri | NBRC-4832, NBRC-4833, NBRC-5305, NBRC-100516, NBRC-105999 |
Zygosaccharomyces bailii | NBRC-0468, NBRC-0493, NBRC-0519, NBRC-1098T, NBRC-1137, NBRC-1611, NBRC-1801, NBRC-10667 |
Zygosaccharomyces bisporus | NBRC-0467, NBRC-0723, NBRC-1131T, NBRC-1249, NBRC-1250, NBRC-1734, NBRC-1736, NBRC-1737 |
Zygosaccharomyces kombuchaensis | NBRC-112840T |
Zygosaccharomyces lentus | NBRC-111512T |
Zygosaccharomyces mellis | NBRC-0485, NBRC-1055, NBRC-1615T, NBRC-1732 |
Zygosaccharomyces parabailii | NBRC-1047T |
Zygosaccharomyces pseudobailii | NBRC-0488T |
Zygosaccharomyces rouxii | NBRC-0487, NBRC-0489, NBRC-0494, NBRC-0495, NBRC-0510, NBRC-0511, NBRC-0512, NBRC-0513, NBRC-0533, NBRC-0597, NBRC-0686, NBRC-0740, NBRC-0846, NBRC-1053, NBRC-1130T, NBRC-1252, NBRC-1730, NBRC-1733, NBRC-1813, NBRC-1814, NBRC-1877, NBRC-1914, NBRC-1960, NBRC-10652, NBRC-10653, NBRC-10654, NBRC-10655, NBRC-10656, NBRC-10657, NBRC-10658, NBRC-10659, NBRC-10660, NBRC-10669, NBRC-10670, NBRC-10671, NBRC-110957 |
Zygosaccharomyces siamensis | NBRC-116063 |
Zygosaccharomyces sp. | NBRC-0320, NBRC-0439, NBRC-0505, NBRC-0506, NBRC-0517, NBRC-0521, NBRC-0523, NBRC-0525, NBRC-0596, NBRC-0845, NBRC-1778, NBRC-1780, NBRC-1812, NBRC-1876, NBRC-1945, NBRC-10668, NBRC-10672, NBRC-11069, NBRC-11070, NBRC-11071, NBRC-115917 |
Zygosporium gibbum | NBRC-30213 |
Zygosporium masonii | NBRC-30214 |
Zygosporium mycophilum | NBRC-9359, NBRC-32050 |
Zygotorulaspora florentinus | NBRC-1088T, NBRC-1806, NBRC-1807, NBRC-1808, NBRC-1809, NBRC-1810, NBRC-1993, NBRC-11088 |
Zygotorulaspora mrakii | NBRC-1835T |
Zygozyma arxii | NBRC-10914T |
Zygozyma oligophaga | NBRC-10360T |
Zygozyma suomiensis | NBRC-10920T |
Zymobacter palmae | NBRC-102412T |
Zymomonas mobilis subsp. mobilis | NBRC-13756 |
Zymomonas mobilis subsp. pomaceae | NBRC-13757T |